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This fourth edition of Stochastic Methods is thoroughly revised and augmented, and 
has been completely reset. While keeping to the spirit of the book I wrote original ly, 
I have reorganised the chapters of Fokker-Planck equations and those on approx­
imation methods, and introduced new material on the white noise limit of driven 
stochastic systems, and on applications and val idity of simulation methods based on 
the Poisson representation. Further, in response to the revolution in financial mar­
kets following from the discovery by Fischer Black and Myron Scholes of a rel iable 
option pricing formula, I have written a chapter on the appl ication of stochastic meth­
ods to financial markets. In doing this, I have not restricted myself to the geometric 
Brownian motion model , but have also attempted to give some flavour of the kinds of 
methods used to take account of the realities of financial markets. This means that I 
have also given a treatment of Levy processes and their applications to finance, since 
these are central to most current thinking. 

Since this book was written the rigorous mathematical formulation of stochastic 
processes has developed considerably, most particularly towards greater precision 
and generality, and this has been reflected in the way the subject is presented in mod­
ern applications, particularly in finance. Nevertheless, I have decided to adhere to my 
original decision, to use relatively simple language without excessive rigour: indeed 
I am not convinced that the increase in rigour and precision has been of significant 
help to those who want to use stochastic methods as a practical tool. 

The new organisation of the material in the book is as in the figure on the next 
page. Instead of the original ten chapters, there are now fifteen. Some of the increase 
is a result of my decision to divide up some of the larger chapters into tighter and 
more logically structured smaller chapters, but Chapters 8 and 1 0  are completely 
new. The basic structure of the book is much the same, building on the basis of Ito 
stochastic differential equations, and then extending into Fokker-Planck equations 
and jump processes. I have put all of the work on the Poisson representation into a 
single chapter, and augmented this chapter with new material. 

Stochastic Methods, although originally conceived as a book for physicists, chem­
ists and similar scientists, has developed a readership with far more varied tastes, 
and this new edition is designed to cater better for the wider readership, as well as to 
those I originally had in mind. At the same time, I have tried hard to maintain "look 
and feel" of the original, and the same degree of accessibility. 

University of Otago, New Zealand 
July, 2008 

From the Preface to the First Edition 

C. W Gardiner 

My intention in writing this book was to put down in relatively simple language and 
in a reasonably deductive form, all those formulae and methods which have been 
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purely theoretical and highly mathematical books, there are books related to electri ­
cal engineering or communication theory, and there are books for biologists-many 
of them very good, but none of them covering the kind of appl ications that appear 
nowadays so frequently in Statistical Physics, Physical Chemistry, Quantum Optics 
and Electronics, and a host of other theoretical subjects. 

The main new point of view here is the amount of space which deals with methods 
of approximating problems, or transforming them for the purpose of approximating 
them. I am fully aware that many workers will not see their methods here. But my 
criterion here has been whether an approximation is systematic. Many approxima­
tions are based on unjustifiable or uncontrollable assumptions, and are justified a 
posteriori. Such approximations are not the subject of a systematic book-at least, 
not until they are properly formulated. and their range of val idity control led. In some 
cases I have been able to put certain approximations on a systematic basi s. and they 
appear here-in other cases I have not. 

A word on the background assumed. The reader must have a good knowledge 
of practical calculus including contour integration, matrix algebra, differential equa­
tions, both ordinary and partial, at the level expected of a first degree i n  applied 
mathematics, physics or theoretical chemistry. 

I expect the readership to consist mainly of theoretical physicists and chemists, and 
thus the general standard is that of these people. This is not a rigorous book in the 
mathematical sense, but it contains results, all of which I am confident are provable 
rigorously, and whose proofs can be developed out of the demonstrations given. The 
organisation of the book is as in the following table, and might raise some eyebrows. 
For, after introducing the general properties of Markov processes, I have chosen to 
base the treatment on the conceptually difficult but intuitively appeal ing concept of 
the stochastic differential equation. I do this because of my own experience of the 
simplicity of stochastic differential equation methods, once one has become famil i ar 
with the Ito calculus, which I have presented in Chap. 4 in a rather straightforward 
manner, such as I have not seen in any previous text. 

For the sake of compactness and simplicity I have normally presented only one 
way of formulating certain methods. For example, there are several different ways 
of formulating the adiabatic elimination results , though few have been used in this 
context. To have given a survey of all formulations would have required an enormous 
and almost unreadable book. However, where appropriate I have included specific 
references, and further relevant matter can be found in the general bibl iography. 

Hamilton, New Zealand 
January, 1983 

C. W Gardiner 
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1.1 Motivation 

Theoretical science up to the end of the nineteenth century can be viewed as the study 
of solutions of differential equations and the modelling of natural phenomena by 
deterministic solutions of these differential equations. It was at that time commonly 
thought that if all initial data could only be collected, one would be able to predict 
the future with certainty. 

We now know this is not so, in at least two ways. Firstly, the advent of quantum 
mechanics within a quarter of a century gave rise to a new physics. and hence a new 
theoretical basis for all science, which had as an essential basis a purely statistical 
element. Secondly, more recently, the concept of chaos has arisen, in which even 
quite s imple differential equation systems have the rather alarming property of giving 
rise to essentially unpredictable behaviour. To be sure, one can predict the future of 
such a system given its initial conditions, but any error in the initial conditions is 
so rapidly magnified that no practical predictability is left. In fact, the existence of 
chaos is really not surprising, since it agrees with more of our everyday experience 
than does pure predictability-but it is surprising perhaps that it has taken so long 
for the point to be made. 

Chaos and quantum mechanics are not the subject of this chapter. Here I wish to 
give a semihistorical outline of how a phenomenological theory of fluctuating phe­
nomena arose and what its essential points are. The very usefulness of predictable 
models indicates that life is not entirely chaos. But there is a l imit to predictabil­
ity, and what we shall be most concerned with in this book are models of limited 
predictability. The experience of careful measurements in science normally gives us 
data l ike that of Fig. 1 . 1 ,  representing the growth of the number of molecules of a 
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Fig. 1.1. Stochastic simulation of an 
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1.2 Some Historical Examples 

1.2.1 Brownian Motion 

The observation that, when suspended in water, small pollen grains are found to be in 
a very animated and irregular state of motion, was first systematically investigated by 
Robert Brown in 1827 [ 1. 1 ], and the observed phenomenon took the name Brownian 
Motion because of his fundamental pioneering work. Brown was botanist-indeed 
a very famous botanist-and he was examining pollen grains in order to elucidate 
the mechanism which by which the grains moved towards the ova when fertilising 
flowers. At first he thought this motion was a manifestation of life he was seeking, 
but when he found that this motion was present in apparently dead pollen, some over 
a century old, some even extracted from fossils, and then even in any suspension of 
fine particles-glass, minerals and even a fragment of the sphinx-he ruled out any 
specifically organic origin of thi s  motion . The motion is illustrated in Fig. 1. 2. 

The riddle of Brownian motion was not quickly solved, and a satisfactory ex­
planation did not come until 1905, when Einstein published an explanation under 
the rather modest title "Uber die von der molekular-kinetischen Theorie der Wiirme 
geforderte Bewegung von in ruhenden Fli.issigkeiten suspendierten Teilchen" (con­
cerning the motion, as required by the molecular-kinetic theory of heat, of particles 
suspended in liquids at rest) [ 1. 2]. The same explanation was independently devel­
oped by Smoluchowski [1. 3], who was responsible for much of the later systematic 
development and for much of the experimental verification of Brownian motion the­
ory. 

There were two major points in Einstein 's solution to the problem of Brownian 
motion. 

Fig. 1.2. Motion of a point undergoing Brownian 
motion 
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grain can only be described probabilistically in terms of exceedingly frequent 
stati stically independent impacts. 

The existence of fluctuations like these ones calls out for a statistical explanation of 
this kind of phenomenon . Statistics had already been used by Maxwell and Bol tz­
mann in their famous gas theories, but only as a description of possible states and 
the likelihood of their achievement and not as an intrinsic part of the time evolution 
of the system. Rayleigh [ 1 .4] was in fact the first to consider a statistical description 
in this context, but for one reason or another, very little arose out of his work. For 
practical purposes, Einstein's explanation of the nature of Brownian motion must be 
regarded as the beginning of stochastic modelling of natural phenomena. 

Einstein's reasoning is very clear and elegant. It contains all the basic concept� 
which will make up the subject matter of this book. Rather than paraphrase a classic 
piece of work, I shall simply give an extended excerpt from Einstein's paper (author's 
translation): 

"It must clearly be assumed that each individual particle executes a motion 
which is independent of the motions of all other particles; it will also be 
considered that the movements of one and the same particle in different time 
intervals are independent processes, as long as these time interval s  are not 
chosen too small. 
"We introduce a time interval T into consideration, which is very small com­
pared to the observable time intervals, but nevertheless so large that in two 
successive time intervals r, the motions executed by the particle can be 
thought of as events which are independent of each other. 
"Now let there be a total of n particles suspended in a liquid. In a time 
interval r, the X-coordinates of the individual particles will increase by an 
amount 6., where for each particle D. has a different (positive or negative) 
value. There will be a certain frequency law for 6.; the number dn of the 
particles which experience a shift which is between D. and D.+ d!J. will be 
expressible by an equation of the form 

dn = n¢(!J.)d!J. , ( 1 .2. 1 ) 
where 

00 
f ¢(D.)d!J. = I , ( 1 .2.2) 

-oo 

and ¢ is only different from zero for very small values of 6., and satisfies the 
condition 

¢(6.) = ¢( -6.) . ( 1 .2.3) 
"We now investigate how the diffusion coefficient depends on¢. We shall 
once more restrict ourselves to the case where the number v of particles per 
unit volume depends only on x and t. 
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"Let v = f(x, t) be the number of particles per unit volume. We compute the 
distribution of particles at the timet+ T from the distribution at time t. From 
the definition of the function ¢(/:l), it is easy to find the number of particles 
which at timet+ Tare found between two planes perpendicular to the x-axis 
and passing through points x and x + dx. One obtains 

00 
.f( x , t + T)dx = dx f .f(x + !J., t)¢(!J.)d!J. . 

-00 

But since Tis very small, we can set 

af 
f(x , t + T) = f(x, t) +Tat . 

Furthermore, we develop f(x + tJ., t) in powers of !J.: 

aj(x, t) tJ.2 a2 f(x, t) 
.f(x + tJ., t) = f(x ,  t) + tJ.---;;;- + 2! ·axz + · · · 

( 1.2 .4) 

( 1 .2 .5) 

( 1 .2 .6) 

We can use this series under the integral, because only small values of tJ. 
contribute to this equation. We obtain 

a.r 00 a.r 00 az f 00 tJ.2 
J + -r = .f f tfJ(tJ.)dtJ. + - f tJ.¢(tJ.)dtJ. + -a 2 I -2 

¢(tJ.)dtJ. · 

� _ fu- x -
( 1 .2 .7) 

Because ¢(x) = ¢( -x), the second, fourth, etc., terms on the right-hand side 
vanish, while out of the I st, 3rd, 5th, etc . ,  terms, each one is very small 
compared with-the previous. We obtain from this equation, by taking into 
consideration 

00 
f ¢(tJ.)dtJ. = I , 

-00 

and setting 

1 00 tJ.2 
- f -¢(!J.)dtJ. = D, 
T-oo 2 

and keeping only the 1 st and third terms of the right-hand side, 

a.r 
= Daz.r ...

. at ax2 

( 1 .2 .8) 

( 1 .2 .9) 

( 1 .2 . 1 0) 

This is already known as the differential equation of diffusion and it can be 
seen that D is the diffusion coefficient. . . . 
"The problem, which corresponds to the problem of diffusion from a sin­
gle point (neglecting the interaction between the diffusing particles), is now 
completely determined mathematically : its solution is 

n e-x2t4Dr 
f(x,t) = 

V4rrD = � .... ( 1 .2. 1 1 )  

1 .2 Some Historical Examples 

"We now calculate, with the help of this equation, the displacement tix in 
the direction of the X-axis that a particle experiences on the average or, 
more exactly, the square root of the arithmetic mean of the square of the 
displacement in the direction of the X-axis; it is 

tlx = ...fi2 = Y2iJi ." ( 1.2. 12) 

5 

Einstein's derivation is real ly based on a discrete time assumption, that impacts hap­
pen only at times 0, r, 2T, 3T . . .  , and his resulting equation ( 1.2. 1 0) for the distribu­
tion function f(x , t) and its solution ( 1 .2 . 1 1) are to be regarded as approximations. i n  
which T is considered so small that t may be considered as being continuous. Nev­
ertheless, his description contains very many of the major concepts which have been 
developed more and more generally and rigorously since then , and which will be 
central to this book. For example: 

i) The Chapman-Kolmogorov Equation occurs as Einstein's equation ( 1 .2 .4) .  It 
states that the probability of the particle being at point x at time t + T is given 
by the sum of the probability of all possible "pushes" tJ. from positions x + tJ., 
multiplied by the probability of being at x + tJ. at time t . This assumption is based 
on the independence of the push tJ. of any previous history of the motion: it is 
only necessary to know the initial position of the particle at time t-not at any 
previous time. This is the Markov postulate and the Chapman Kolmogorov equa­
tion, of which ( 1 .2 .4) is a special form, is the central dynamical equation to all 
Markov processes. These will be studied in detail in Chap. 3. 

ii) The Fokker-Planck Equation: Eq. ( 1.2 .1 0) is the diffusion equation, a special case 
of the Fokker-Planck equation (also known as Kolmogorov's eq uati on) which de­
scribes a large class of very interesting stochastic processes in which the system 
has a continuous sample path. In this case, that means that the pollen grain's 
position, if thought of as obeying a probabilistic law given by solving the diffu­
sion equation ( 1 .2 . 1 0), in which timet is continuous (not discrete, as assumed by 
Einstein), can be written x (t), where x(t) is a continuous fimction of time-but a 
random function. This leads us to consider the possibility of describing the dy­
namics of the system in some direct probabil istic way, so that we would have a 
random or stochastic differential equation for the path. This procedure was ini­
tiated by Langevin with the famous equation that to this day bears his name. We 
will discuss this in Sect. 1 .2 .2, and in detail in Chap. 4. 

iii) The Kramers-Moyal and similar expansions are essentially the same as that used 
by Einstein to go from ( 1 .2.4) (the Chapman-Kolmogorov equation) to the diffu­
sion equation ( 1 .2 . 1 0) .  The use of this type of approximation, which effectively 
replaces a process whose sample paths need not be continuous with one whose 
paths are continuous. is very common and convenient. Its use and validity will 
be discussed in Chap. I I .  
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1.2.2 Langevin's Equation 

Some time after Einstein's original derivation, Langevin [1.5] presented a new 
method which was quite different from Einstein's and, according to him, "infinitely 
more simple." His reasoning was as follows. 

From statistical mechanics, it was known that the mean kinetic energy of the Brow­
nian particle should, in equilibrium, reach a value 

(!mv2) = tkT, ( 1 .2. 1 3 ) 

(T; absolute temperature, k; Boltzmann's constant). (Both Einstein and Smolu­
chowski had used this fact). Acting on the particle, of mass m there should be two 
forces: 

i )  A viscous drag: assuming this is given by the same formula as in macroscopic 
hydrodynamics, this is -61rT7a dxjdt where T7 is the viscosity and a the diameter 
of the particle, assumed spherical. 

ii) Another fluctuating force X which represents the incessant impacts of the mo­
lecules of the l iquid on the Brownian particle. All that is known about it is that 
fact, and that it should be positive and negative with equal probability. Thus, the 
equation of motion for the position of the particle is given by Newton's law as 

d2x dx 
m- = -61rT7a- + X, 

dt2 d t 

and multiplying by x, this can be written 

m d2 7 d(�) 
- - (.c)- mv2 = -37r'la -- + Xx ,  
2 dt2 dt 

( 1 .2. 1 4) 

( 1 .2 . 1 5 )  

where v = dxfdt. We now average over a large number o f  different particles and use 
( 1 .2. 13) to obtain an equation for (�): 

'!!_ d2 (�) 
+ 37r'la

d(�) =kT, ( 1 .2. 1 6) 
2 dt2 dt 

where the term ( xX) has been set equal to zero because (to quote Langevin) "of the 
irregularity of the quantity X". One then finds the general solution 

d(�) = kT f(37r'la) + C exp( -61rT7at/m) , 
dt 

( 1 .2 . 17 )  

where C is an arbitrary constant. Langevin estimated that the decaying exponential 
approaches zero with a time constant of the order of 1 o-8 s, which for any practical 
observation at that time, was essentially immediately. Thus, for practical purposes, 
we can neglect this term and integrate once more to get 

(2)- (x�) = [kT /(37r'la)]t. ( 1 .2. 18)  

This corresponds to ( 1 .2. 1 2) as deduced by Einstein, provided we identify 

n = lrT/(ftrrnnL ( 1 .2. 1 9) 

1 .2 Some Historical Examples 7 

a result which Einstein derived in the same paper but by independent means . 
Langevin's equation was the first example of the stochastic diffe re ntial equation­

a differential equation with a random term X and hence whose solution is, in some 
sense, a random function. Each solution of Langevin's equation represents a differ­
ent random trajectory and, using only rather simple properties of X (his fluctuating 
force), measurable results can be derived. 

One question arises: Einstein expl icitly required that (on a sufficiently l arge time 
scale) the change b. be completely independent of the preceding value of b.. Langevin 
did not mention such a concept expl icitly, but it is there, implicitly, when one sets 
(Xx) equal to zero. The concept that X is extremely irregular and (which is not men­
tioned by Langevin, but is implicit) that X and x are in depen dent of each other-that 
the irregularities in x as a function of time, do not somehow conspire to be always 
in the same direction as those of X, so that it would not be valid to set the average 
of the product equal to zero. These are really equivalent to Einstein's independence 
assumption. The method of Langevin equations is clearly very much more direct. at 
least at first glance, and gives a very natural way of generalising a dynamical equation 
to a probabil istic equation. An adequate mathematical grounding for the approach of 
Langevin, however, was not available until more than 40 years later, when Ito for­
mulated his concepts of stochastic differential equations. And in this formulation, 
a precise statement of the independence of X and x led to the calculus of stochastic 
differentials, which now bears his name and which will be fully developed in Chap. 4. 

As a physical subject, Brownian motion had its heyday in the first two decades of 
last century, when Smoluchowski in particular, and many others carried out extensive 
theoretical and experimental investigations, which showed complete agreement with 
the original formulation of the subject as initiated by himself and Einstein, see [ 1.61. 
More recently, with the development of laser light scattering spectroscopy, Brownian 
motion has become very much more quantitatively measurable. The technique is to 
shine intense, coherent laser l ight into a small volume of liquid containing Brownian 
particles, and to study the fluctuations in the intensity of the scattered light, which 
are directly related to the motions of the Brownian particles. By these means it is 
possible to observe Brownian motion of much smaller particles than the traditional 
pollen, and to derive useful data about the sizes of viruses and macromolecules. With 
the preparation of more concentrated suspensions, interactions between the particles 
appear, generating interesting and quite complex problems related to macromolecu­
lar suspensions and colloids [ 1 .  7] .  

The general concept of fluctuations describable by such equations has developed 
very extensively in a very wide range of situations. The advantages of a continu­
ous description tum out to be very significant, since only a very few parameters are 
required, i.e., essentially the coefficients of the derivatives in ( 1 .2 .  7): 

00 00 
I b.<fJ(b.)db. , and I b.2¢(b.)db. . (1.2.20) 

-00 -00 

It is rare to find a problem which cannot be specified, in at least some degree of 
approximation, by such a system, and for qualitative simple analysis of problems it 
is normally quite sufficient to consider an appropriate Fokker-Planck equation, of a 
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fonn obtained by allowing both coefficients ( 1 .2 .20) to depend on x ,  and in a space 
of an appropriate number of dimensions. 

1.3 The Stock Market 

The equations of Brownian motion were in fact first derived by Bachelier in his 
doctoral thesis [ 1 .8], in which he applied the ideas of probabil ity to the pricing of 
shares and options in the stock market. He introduced the idea of the relative value 
x = X - Xo of a share, that is the difference between its absolute value X and the 
most probable value X0. He then considered the probability distribution Px.r of rel­
ative share prices x at time t, and then deduced the "law of composition" of these 
probabilities 

Px,r1 +r" = f Px,t1 P:-xh dz · (1. 3. 1) 

This is the Chapman-Kolmogorov equation, that is, i t  is essentially Einstein's equa­
tion, ( 1.2.4 ), and the reasoning used to deduce it is basically the same as that of 
Einstein. Bachelier then sought a solution of the fonn 

and showed that A and B would be functions of time, concluding: 

"The definitive expression for the probabil ity is thus 
1 -4 p = --- e 4nl-< • 

2Jrk ...[t 
The mathematical expectation 

00 . 
f px dx = k...fi . 
0 

is proportional to the square root of the time." 

( 1.3.2) 

(1. 3. 3) 

(1. 3. 4) 

Bachelier gave another derivation rather more similar to Einstein's, in which he di­
vided time into discrete intervals, and considered discrete jumps in the share prices, 
arriving finally at the heat equation, ( 1 .2.1 0) as the differential equation for the prob­
ability distribution. The thesis then considers applications of this probability law to 
a range of the kind of financial transactions current on the Paris stock exchange of 
the early 1900s. The value of the work lies in the ideas, rather than the actual results, 
since Bachelier's use of the Gaussian fonn for the distribution Px.r clearly has the 
defect that there is a finite probability that the stock price can become negative, a 
possibility that he considers, but prefers to treat as negligible. 

1.3.1 Statistics of Returns 

That the price changes x can have a Gaussian distribution is a reasonable result only 
if these changes are small compared with the mean price-but this must clearly break 
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down with increasing time if (xl) - t. Bachelier's work did not generate much in­
terest in finance circles until the 1 960s, when Samuelson [ I .  9] decided to develop 
the approach further. Samuelson rather unfairly criticised Bachelier for "forgetting" 
that negative prices of shares were not pennissible, and suggested a solution to this 
problem by proposing that changes in prices are most reasonably described as per­
centages. Expl icitly, he proposes the correct quantity to consider is what has become 
known as the return on the share price, given by 

X 
r=­

X' (1.3.5) 

that is the fractional gain or loss in the share price. This leads to a fonnulation in 
which 

p = logX, (1.3.6) 

is regarded as the quantity that undergoes Brownian motion. This has the obvious 
advantage that p � - oo means X � 0, so the natural range (0, oo) of prices is 
recovered. 

There is also a certain human logic in the description. Prices move as a resul t of 
judgments by buyers and sellers, to whom the natural measure of a price change 
is not the absolute size of the change, but the fractional change. The improvement 
over Bachel ier's result is so significant, and the resulting description in terms of the 
logarithm of the price and the fractional price change so simple, that this is the pre­
ferred model to this day. Samuelson tenned the process geometric Brownian motion 
or alternatively economic Brownian motion. 

1.3.2 Financial Derivatives 

In order to smooth the running of business, it is often helpful to fix in advance the 
price of a commodity which will be needed in the future-for example, the price of 
wheat which has not yet been grown and harvested is moderately uncertain. A baker 
could choose to pay a fixed sum now for the future delivery of wheat. Rather than 
deal with an individual grower, the baker can buy the ungrown wheat from a dealer 
in wheat futures , who charges a premium and arranges appropriate contracts with 
growers. However, the contract to deliver wheat at a certain price on a future date 
can itself become a tradable item. Having purchased such a contract, the baker can 
sell it to another baker, or indeed, to anyone else, who may buy it with the view to 
selling it at a future date, without ever having had anything to do with any wheat at 
all. 

Such a contract is known as a derivative security. The wheat future exists only 
because there is a market for real wheat, but nevertheless can develop an existence 
of its own. Another kind of derivative is an option, in which one buys the right to 
purchase something at a future date at a definite price. If the market price on the 
date at which the option is exercised is larger than the option price, one exercises 
the option. If the market price turns out to be below the option price, one discards 
the option and pays the market price. Purchasing the option l imits exposure to price 



rises, transferring the risk to the seller of the option, who charges appropriately, and 
special izes in balancing risks. Options to purchase other securities, such as shares 
and stocks, are very common, and indeed there are options markets which trade 
under standardized conditions. 

1.3.3 The Black-Scholes Formula 

Although a description of market processes in terms of stochastic processes was 
well-known by the 1 970s, it was not clear how it could be used as a tool for making 
investment decisions. The breakthrough came with the real ization that a p ortfolio 

containing an appropriate mix of cash, stocks and options could be devised in which 
the short term fluctuations in the various values could be cancelled, and that this gave 
a relatively simple formula for valuing options-the Black-Scholes Formula-which 
would be of very significant value in making investment decisions. This formula  has 
truly revolutionized the practice of finance; to quote Samuelson [ I .  10] 

"A great economist of an earlier generation said that, useful though eco­
nomic theory is for understanding the world, no one would go to an eco­
nomic theorist for advice on how to run a brewery or produce a mousetrap. 
Today that sage.would have to change his tune: economic principles really 
do apply and woe""the accountant or marketer who runs counter to economic 
law. Paradoxically, one of our most elegant and complex sectors of economic 
analysis-the modern theory of finance-is confirmed daily by millions of 
statistical observations. When today's associate professor of security analy­
sis is asked 'Young man, if you're so smart why ain' t  you rich?' , he replies 
by laughing all the way to the bank or his appointment as a high-paid con­
sultant to Wall Street." 

The derivation was given first in the paper of Black and Scholes [ 1 . 1 1 ], and a dif­
ferent derivation was given by Merton [ 1 . 1 2] . The formula depends critically on 
description of the returns on securities as a Brownian motion process, which is of 
l imited accuracy. Nevertheless, the formula is sufficiently realistic to make investing 
in stocks and options a logical and rational process, justifying Samuelson's perhaps 
over-dramatised view of modern financial theory. 

1.3.4 Heavy Tailed Distributions 

There is , however, no doubt that the geometric Brownian motion model of financial 
markets is not exact, and even misses out very important features. One need only 
study the empirical values of the returns in stock market records (as well as other 
kinds of markets) and check what kinds of distributions are in practice observed. 
The results are not really in agreement with a Gaussian distribution of returns­
rather, the observed distribution of returns is usually approximately Gaussian for 
small values of r, but the probability of large values of r is always observed to be 
significantly larger than the Gaussian prediction-the observed distributions are said 
to have heavy tails. 

The field of Continuous Time Finance [ 1 . 1  0] is an impressive theoretical edifice 
built on this flawed foundation of Brownian motion, but so far it appears to be the 
most practical method of modell ing financial markets. With modern electronic bank­
ing and transfer of funds, it is possible to trade over very short time interval s, during 
which perhaps , in spite of the overall increase of trading activity which results, a 
Brownian description is val id. 

It is certainly sufficiently valued for its practitioners to be highly valued, as 
Samuelson notes. However, every so often one of these practitioners makes a spectac­
ular loss, threatening financial institutions. While there i s  publ ic alarm about bill ion 
dollar losses, those who acknowledge the significance of heavy tai ls are unsurprised . 

1.4 Birth-Death Processes 

A wide variety of phenomena can be model led by a particular class of process called 
a birth-death process. The name obviously stems from the model ling of human or 
animal populations in which individuals are born, or die. One of the most entertaining 
models is that of the prey-predator system consisting of two kinds of animal , one of 
which preys on the other, which is itself supplied with an inexhaustible food supply. 
Thus letting X symbolise the prey, Y the predator, and A the food of the prey, the 
process under consideration might be 

X+A-+2X, 

X+ Y--+ 2Y, 

y--+ B, 

( 1 .4. 1 a) 

( 1 .4 .lb) 
( 1 .4. 1 c) 

which have the fol lowing naive, but charming interpretation. The first equation sym­
bolises the prey eating one unit of food, and reproducing immediately. The second 
equation symbol ises a predator consuming a prey (who thereby dies-this is the only 
death mechanism considered for the prey) and immediately reproducing. The final 
equation symbolises the death of the predator by natural causes. It is easy to guess 
model differential equations for x andy, the numbers of X and Y. One might assume 
that the first reaction symbolises a rate of production of X proportional to the product 
of x and the amount of food; the second equation a production of Y (and an equal 
rate of consumption of X) proportional to xy, and the last equation a death rate of Y, 
in which the rate of death of Y is simply proportional to y; thus we might write 

dx 
dt 

= k,ax - k2 xy , ( 1 .4.2a) 
dy 
dt 

= k2xy - k3y · ( 1 .4.2b) 

The solutions of these equations, which were independently developed by Lotka 
[1.13] and Vol terra [1.14] have very interesting osci l lating solutions, as presented 
in Fig. 1 .3a. These oscil lations are qualitatively easily explicable. In the absence of 
significant numbers of predators, the prey population grows rapidly until the pres­
ence of so much prey for the predators to eat stimulates their rapid reproduction, at 
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Fig. 1.3a--c. Time development in prey-predator systems. (a) Plot of solutions of the deter­
ministic equations ( 1.4.2a, 1 .4.2b) (x = solid line, y =dashed line). (b) Data for a real prey­
predator system. Here the predator is a mite (Eotetranychus sexmaculatus-dashed line) which 
feeds on oranges, and the prey is another mite (Typhlodromus occidentalis). Data from [1.15, 
1. 16]. (c) Simulation of stochastic equations ( 1.4.3a- 1.4.3d). 

the same time reducing the number of prey which get eaten. Because a large number 
of prey have been eaten, there are no longer enough to maintain the population of 
predators, which then die out, returning us to our initial situation. The cycles repeat 
indefinitely and are indeed, at least qualitatively, a feature of many real prey-predator 
systems. An example is given in Fig. 1 .3b. 

Of course, the realistic systems do not fol low the solutions of differential equations 
exactly-they fluctuate about such curves. One must include these fluctuations and 

the simplest way to do this is by means of a birth-death master equation. We assume 
a probability distribution, P(x, y, t), for the number of individuals at a given time 
and ask for a probabilistic law corresponding to ( 1 .4.2a, 1 .4.2b). This is done by 
assuming that in an infinitesimal time !J.t, the following transition probabilitr laws 
holds. 

. 

Prob (x � x + l;y � y )  = k1axD.t, 

Prob (x � x - I ; y � y + I )  = k2xy !J.t , 
Prob (x � x; y � y - I) = k3yD.t, 
Prob (x � x;y � y )  

( 1.4.3a) 
( 1.4.3b) 
( 1 .4.3c) 
( 1 .4.3d) 

Thus, we simply, for example, replace the simple rate laws by probability laws. We 
then employ what amounts to the same equation as Einstein and others used, i .e . ,  the 
Chapman-Kolmogorov equation, namely, we write the probability at t + !J.t as a sum 
of terms, each of which represents the probabil ity of a previous state multipl ied by 
the probability of a transition to the state (x , y). Thus. we find by letting D.t � 0: 

P(x, y, t + !J.t)- P(x, y, t) IJP(x, y, t) 
� --..::._...:.. 

ot 
= k1a(x - !)P(x - l,y,t)+k1(x+ l)(y - 1) 

xP(x+ l.y - l,t)+k3(y+ l )P(x.y+ l , t) 
- (k, ax+ k2xy + k3y)P(x, Y_, t) .  ( 1.4.4) 

In writing the assumed probability laws ( 1 .4.3a- 1 .4.3d), we are assuming that the 
probability of each of the events occurring can be determined simply from the 
knowledge of x and y .  This is again the Markov postulate which we mentioned in 
Sect. 1 .2. 1 .  In the case of Brownian motion, very convincing arguments can be made 
in favour of this Markov assumption . Here it is by no means clear. The concept of 
heredity, i .e., that the behaviour of progeny is related to that of parents, clearly con­
tradicts thi s assumption. How to include heredity is another matter; by no means 
does a unique prescription exist. 

The assumption of the Markov postulate in this context is val id to the extent that 
different individuals of the same species are similar; it is invalid to the extent that. 
nevertheless, perceptible inheritable differences do exist. 

This type of model has a wide application-in fact to any system to which a popu­
lation of individuals may be attributed, for example systems of molecules of various 
chemical compounds, of electrons, of photons and similar physical particles as well 
as biological systems. The particular choice of transition probabilities is made on 
various grounds determined by the degree to which details of the births and deaths 
involved are known. The simple multiplicative laws, as illustrated in ( 1 .4.3a- 1 .4.3d), 
are the most elementary choice, ignoring, as they do, almost all details of the pro­
cesses involved. In some of the physical processes we can derive the transition prob­
abilities in much greater detail and with greater precision. 

Equation ( 1 .4.4) has no simple solution, but one major property differentiates 
equations like it from an equation of Langevin's type, in which the fluctuation term 
is simply added to the differential equation. Solutions of ( 1 .4.4) determine both the 
gross deterministic motion and the fluctuations; the fluctuations are typically of the 
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same order of magnitude as the square roots of the numbers of individuals involved. 
It is not difficult to simulate a sample time development of the process as in Fig. 1 .3c . 
The figure does show the correct general features, but the model is so obviously sim­
plified that exact agreement can never be expected. Thus, in contrast to the situation 
in Brownian motion, we are not dealing here so much with a theory of a phenomenon, 
as with a class of mathematical models, which are simple enough to have a very wide 
range of approximate validity. We will see in Chap. I I  that a theory can be developed 
which can deal with a wide range of models in this category, and that there is indeed 
a close connection between this kind of theory and that of stochastic differential 
equations . 

1.5 Noise in Electronic Systems 

The early days of radio with low transmission powers and primitive receivers, made 
it evident to every ear that there were a great number of highly irregular electrical 
signals which occurred either in the atmosphere, the receiver, or the radio transmitter, 
and which were given the collective name of "noise", since this is certainly what they 
sounded like on a radio. Two principal sources of noise are shot noise and Johnson 
noise. 

1.5.1 Shot Noise 

In a vacuum tube (and in solid-state devices) we get a nonsteady electrical current, 
since it is generated by individual electrons, which are accelerated across a distance 
and deposit their charge one at a time on the anode. The electric current arising from 
such a process can be written 

l(t) = L F(t - tk ) ,  ( 1 .5 . 1 )  
II 

where F(t - tk) represents the contribution to the current of an electron which arrives 
at time tk . Each electron is therefore assumed to give rise to the same shaped pulse, 
but with an appropriate delay, as in Fig. 1 .4. 

A statistical aspect arises immediately we consider what kind of choice must be 
made for tk . The simplest choice is that each electron arrives independently of the 
previous one-that is , the times tk are randomly distributed with a certain average 
number per unit time in the range ( - oo ,  oo) , or whatever time is under consideration . 

The analysis of such noise was developed during the 1 920's and 1 930's and was 
summarised and largely completed by Rice [ 1 . 1 7] .  It was first considered as early as 
1 9 1 8  by Schottky [ 1 . 1 8] .  

We shall find that there i s  a close connection between shot noise and processes 
described by birth-death master equations .  For, if we consider n, the number of elec­
trons which have arrived up to a time t, to be a statistical quantity described by 
a probability P(n, t), then the assumption that the electrons arrive independently is 
clearly the Markov assumption. Then, assuming the probability that an electron will 
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Fig. 1 .4. Illustration of shot noise:  identical electric pulses arrive at random times 

�rrive in the time interval between t and t + l'.t is completely independent of t and 11 ,  
Its .only dependence can be on !'.t. By choosing an appropriate constant ;! ,  we may 
wnte 

Prob (n --+ n + I ,  in time M) = A. !'.t , 

so that 

P(n, t + M) = P(n, t)( 1 - A !'.t) + P(n - I ,  t)A. M ,  

and taking the limit !'.t --+ 0 
oP(n, t) 
-

8
-
t 
- = A. [P(n - I ,  t) - P(n, t)] , 

( 1 .5 .2 )  

( 1 . 5 . :1 ) 

( 1 . 5 .4 ' 
which is a pure birth process. By writing 

G(s, t) = L s" P(n, t) , ( 1 . 5 . 5  
[�ere, G(s, t )  .is known a�  the generating function for P(n, t) , and the particul ar tech · mque of solvmg ( 1 .5 .4) IS very widely used], we find 

oG(s, t) --ar- = A.(s - I )G(s, t), ( 1 .5 . 6  

so  that 

G(s, t) = exp(;!(s - I )t]G(s, 0) . ( 1 . 5 .  7 

By requirin� at time t = 0 that no electrons had arrived, it is clear that P(O. O) i s  · �nd P(n, 0) ts zero for all n ;;:. I ,  so that G(s, 0) = I .  Expanding the solution ( 1 .5 .  7 m powers of s, we find 
P(n, t) = exp(-/lt)(At)" fn ! , ( 1 . 5 . 8  

which i s  .kn�wn as a Poisson distribution (Sect. 2 .8 . 3 ) .  Let us introduce the variabh fi!Ct), whtc� ts to be considered as the number of electrons which have arrived up I< ttme t, and ts a random quantity. Then, 
P(n, t) = Prob {N(t) = n} , ( 1 . 5 . 9  

and N(t) can be called a Poisson process variable. Then clearly, the quantity J.l(f) formally defined by 
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J1(t) = dN(t)/ dt , ( 1 .5 . 1 0) 

is zero, except when N(t) increases by 1 ;  at that stage it is a Dirac delta function, i .e . , 

11u> = 2: oCt - td , 
k 

( 1 .5 . 1 1 )  

where the tk are the times of arrival of the individual electrons. We may write 

00 
l(t) = f dt' F(t - t' )J1(t' ) .  ( 1 .5 . 1 2) 

-00 

A very reasonable restriction on F(t - t' ) is that it vanishes if t < t' ,  and that for 
t ---+ 00, it also vanishes. This simply means that no current ari ses from an electron 
before it arrives, and that the effect of its arrival eventually dies out. We assume then, 
for simplicity, the very commonly encountered form { q e-n1 , 

F(t) = 
0 ,  

(t > 0) ' 

(t < 0) ' 

so that ( 1 .5 . 1 2) can be rewritten as 

I ' dN(t' )  
/(t) = f dt' e-<>< t-t l __ . q dt' -00 

We can derive a simple differential equation. We differentiate l(t) to obtain 

dl(t) 
J
t 

d ' -n(t-t' ) dN(t' )  + [,., e-a(t-t' ) dN(t' ) ] 
-- = - t aq e  -- , • 

dt -00 dt' dt 1' =1 

so that 
dl(t) 

= -al(t) + qJ1(f) . 
dt 

( 1 .5 . 1 3 ) 

( 1 .5 . 1 4) 

( 1 .5 . 1 5) 

( 1 .5 . 1 6) 

This is a kind of stochastic differential equation. similar to Langevin's equation, in 
which, however, the fluctuating force is given by qJ1(f), where J1{t)  is the derivative 
of the Poisson process, as given by ( 1 .5 . 1 1 ) . However, the mean of J1(t) is nonzero, 
in fact, from ( 1 .5 . 1  0) 

(j.L(t)dt) = (dN(t)) = 1l dt , 

( [dN(t) - Mt]2 )  = 1l dt , 

( 1 .5 . 1 7) 

( 1 .5 . 1 8) 

from the properties of the Poisson distribution, for which the variance equals the 
mean. Defining, then, the fluctuation as the difference between the mean value and 
dN(t) ,  we write 

dry(t) = dN(t) - Adt , ( 1 .5 . 1 9) 

so that the stochastic differential equation ( 1 .5 . 1 6) takes the form 

A T i t ) - r Jn - rY H tHrlt + adn(t) .  ( 1 .5 .20) 
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Now how does one solve such an equation? In this case, we have an academic prob­
lem anyway since the solution is known, but one would like to have a technique . 
Suppose we try to follow the method used by Langevin-what will we get as an 
answer? The short reply to this question is : nonsense. For example, using ordinary 
calculus and assuming (f(t)dry(t)) = 0, we can derive 

d(l(t)) 
= ll.q - a(/(t)) , 

dt 

� d(/2 (t)) 
= ll.q(f(t)) - a(/2 (t)) . 

2 dt 

( 1 . 5 .2 1 )  

( 1 . 5 . 22 )  

Solving in the limit t ---+ oo, where the mean values would reasonably b e  expected to 
be constant one finds 

(l(oo)) = �lq/a, 

(12 (oo)) = (Aq/a)2 . 
( 1 . 5 . 2 3 )  

( 1 .5 .24 ) 

The first answer is reasonable-it merely gives the average current through the sys­
tem in a reasonable equation, but the second implies that the mean square current i s  
the same as the square of the mean, i .e . ,  the current at t ---+ oo does not fluctuate ! 
This is rather unreasonable, and the solution to the problem will show that stochastic 
differential equations are rather more subtle than we have so far presented . 

Firstly, the notation in terms of differentials used in ( 1 .5 . 1 7- 1 .5 .20) has been cho­
sen deliberately. In deriving ( 1 .5 .22), one uses ordinary calculus, i .e . , one writes 

( 1 . 5 . 25 ) 

and then one drops the (d/)2 as being of second order in dl. But now look at ( 1 . 5 . 1 8 ) :  

this is equivalent to 

( 1 . 5 .26 )  

so that a quantity o.f second order in dry is  actually ofjirst order in  dt. The reason is 
not difficult to find. Clearly, 

dry(t) = dN(t) - II.  dt , ( 1 .5 .27 ) 

but the curve of N(t) is a step function, discontinuous, and certainly not differen­
tiable, at the times of arrival of the individual electrons. In the ordinary sense, none 
of these calculus manipulations is permissible. But we can make sense out of them 
as follows. Let us simply calculate (d(/2 )) using ( 1 .5 .20, 1 .5 .25 ,  1 .5 .26): 

(d(lh = 2(/( [/l.q - al]dt + q dry(t) }) + ( { [tlq - al]dt + q dry(t) }2 ) .  ( 1 . 5 . 28 )  

We now assume again that (/(t)dry(t)) = 0 and expand, after taking averages using 
the fact that (dry(t)2 ) = II.  dt, to l st order in dt. We obtain 

�d(/2 )  = [�lq(l) - a(/2 ) + ! c/11.] dt , ( 1 . 5 .29) 

and this gives 

( 1 .5 .30 ) 
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Thus, there are fluctuations from this point of view, as t --t oo .  The extra term in 
( 1 . 5 .29) as compared to ( 1 .5 .22) arises directly out of the statistical considerations 
implicit in N(t) being a discontinuous random function . 

Thus we have discovered a somewhat deeper way of looking at Langevin's kind 
of equation-the treatment of which, from this point of view, now seems extremely 
naive. In Langevin's method the fluctuating force X is not specified, but it wiJI be­
come clear in this book that problems such as we have just considered are very 
widespread in this subject. The moral is that random functions cannot normally be 
differentiated according to the usual laws of calculus; special rules have to be de­
veloped, and a precise specification of what one means by differentiation becomes 
important. We wiJI specify these problems and their solutions in Chap. 4 which will 
concern itself with situations in which the fluctuations are Gaussian. 

1.5.2 Autocorrelation Functions and Spectra 

The measurements which one can carry out on fluctuating systems such as electric 
circuits are, in practice, not of unlimited variety. So far, we have considered the dis­
tribution functions, which teJI us, at any time, what the probability distribution of the 
values of a stochastic quantity are. If we are considering a measurable quantity x(t) 
which fluctuates with time, in practice we can sometimes determine the distribution 
of the values of x, though more usually, what is available at one time are the mean 
x(t) and the variance var[x(t)] . 

The mean and the variance do not tell a great deal about the underlying dynamics 
of what is happening. What would be of interest is some quantity which is a measure 
of the influence of a value of x at time t on the value at time t + T. Such a quantity is 
the autocorrelation function, which was apparently first introduced by Taylor [ 1 . 1 9] 

as 
1 T 

G(r) = l im - I  dt x(t)x(t + r) . 
T->oo T 0 

( 1 .5 . 3 1 )  

This is the time average of a two-time product over an arbitrary large time T, which 
is then aJiowed to become infinite. Using modern computerized data collection tech­
nology it is straightforward to construct an autocorrelation from any stream of data, 
either in real time or from recorded data. 

A closely connected approach is to compute the spectrum of the quantity x(t) . This 
is defined in two stages. First, define 

T . 
y(w) = I dt e-1w1x(t) , 

0 

then the spectrum is defined by 

S (w) = lim 2
1
T l y(w) l 2 . 

T ..... oo rc 

( 1 .5 .32) 

( 1 .5 .33 ) 

The autocorrelation function and the spectrum are closely connected. By a little ma­
nipulation one finds 
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S (w) = lim - I  cos(wr)dT- I x(t)x(t + r)dt , 
[ 1 T j T -r ] T ->oo rc 0 T 0 

( 1 .5 . 34 )  

and taking the limit T --t oo (under suitable assumptions to ensure the val idity o f  
certain interchanges of order), one finds 

1 00 
S (w) = - I  cos(wr)G(r)dr . 

re o 
( 1 . 5 . 3 5 ) 

This is a fundamental result which relates the Fourier transform of the autocorrelation 
function to the spectrum. The result may be put in a slightly different form when one 
notices that 

j T-r 
G(-r) = Jim - I dt x(t + r)x(t) = G(r) , 

T->oo T -r 
so we obtain 

I oo 
S (w) = -

2 
I e-iwrG(r) dT , 

TC -oo 

with the corresponding inverse 

00 
G(r) = I eicurS (w) dw . 

-00 

( 1 . 5 . 3 6 )  

( 1 .5 . 3 7 )  1 

This result is known as the Wiener-Khinchin theorem [ 1 .20, 1 .2 1 ]  and has widespread 
application . 

It means that one may either directly measure the autocorrelation function of a 
signal , or the spectrum, and convert back and forth, which by means of the fast 
Fourier transform and computer is relatively straightforward. 

1.5.3 Fourier Analysis of Fluctuating Functions: Stationary Systems 

The autocorrelation function has been defined so far as a time average of a signal , but 
we may also consider the ensemble average, in which we repeat the same measure­
ment many times, and compute averages, denoted by ( ) . It wiJI be shown that for 
very many systems, the time average is equal to the ensemble average; such systems 
are termed ergodic-see Sect. 3 .7 . 1 .  

If we have such a fluctuating quantity x(t), then we can consider the average of the 
product of two time-values of x 

(x(t)x(t + r)) = G(r) . ( 1 . 5 . 39 ) 

The fact that the result is independent of the absolute time t is a consequence of our 
ergodic assumption. 

Now it is very natural to write a Fourier transform for the stochastic quantity x(t) 
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x(t) = I dw c(w)eiwt , 

and consequently, 

( 1 .5 .40) 

] 
I ) -iwl c(w) = - dt x(t e . 

2rr 
( 1 .5 .4 1 )  

Note that x(t) real implies 

c(w) = c* (-w) . ( 1 .5 .42) 

If the system is ergodic, we must have a constant (x(t)) , since the time avera�e is 

clearly constant. The process is then stationary by which we mean that all ti
_
me­

dependent averages are functions only of time differences, i .e . ,  averages of functions 

x(t 1 ) ,  x(t2 ) ,  . . .  x(t11 ) are equal to those of x(l t + L\), x(t2 + �), . . .  x(t" + �). 

For convenience, in what follows we assume (x) = 0. Hence, 

I . 
(c(w)) = - I dt (x)e-owt = 0 , 

2rr 
• 1 

1 
I I d d 1 -iwt+iw't' ( (t) (tl )) (c(w)c (w )) = 

(2rr)2 
t t e x x , 

= -1-c5(w - w1 ) f dr eiwTG(r) ,  
(2rr) 

= c5(w - w1 )S (w) .  

( 1 .5 .43) 

( 1 .5 .44) 

Here we find not only a relationship between the mean square ( ic(w) l2 ) and the spec­

trum but also the result that stationarity alone implies that c(w) and c* (w1 ) are un­

corr�lated, since the term c5(w - w1 ) arises because (x(t)x(t1 )) is a function only of 

t - t1 • 

1 .5.4 Johnson Noise and Nyquist's Theorem 

Two brief and elegant papers appeared in 1 928 in which Johnson [ 1 .22] d�monstrated 

experimentally that an electric resistor automatically ge�erated �uc�uati?ns of elec­

tric voltage, and Nyquist [ 1 .23] demonstrated its theoretical denvatJOn, m complete 

accordance with Johnson's experiment. The principle involved was already known by 

Schottky [ 1 . 1 8] and is the same as that used by Einstein and 
_
Langevin._ This princip

_
le 

is that of thermal equil ibrium. If a resistor R produces electnc flu�tuatlons, _these wtll 

produce a current which will generate heat. The heat produced m �he restst�r must 

exactly balance the energy taken out of the fluctuations. T�e detatled workmg out 

of this principle is not the subject of this section, but we wtll fi�d that such results 

are common throughout the physics and chemistry of stochasttc processes, �here 

the principles of statistical mechanics, whose basis is not essentially stochasttc, are 

brought in to complement those of stochastic processes-such results are known as 

fluctuation -dissipation theorems. . . 

Nyquist 's experimental result was the following. We have an electnc reststor of 

resistance R at absolute temperature T. Suppose by means of a suitable filter we 

measure E(w)dw, the voltage across the resistor with angular frequency in the range 

(w, w + dw ) . Then, if k is Boltzmann's constant, 
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( 1 . 5 .45 ) 

This result is known nowadays as Nyquist 's theorem. Johnson remarked. 'The effect 
is one of the causes of what is called 'tube noise' in vacuum tube ampli fiers . I ndeed . 
it is often by far the larger part of the 'noise' of a good amplifier." 

Johnson noise is easily described by the formalism of the previous �uhscct ion . 
The mean noise voltage is zero across a resistor, and the system is arranged so that 
it is in a steady state and is expected to be well represented by a stationary proce�� 
Johnson's quantity is, in practice, a limit of the kind ( 1 .5 .33) and may be summari �et 
by saying that the voltage spectrum S (w) is given by 

S (w) = RkT/rr, ( 1 . 5 .46 

that is, the spectrum is flat, i .e . ,  a constant function of (u. In the case of l ight. thl 
frequencies correspond to different colours of light. If we perceive l ight to be white 
it is found that in practice all colours are present in equal proportions-the opt ica 
spectrum of white light is thus flat-at least within the vi sible range. In analogy 
the term white noise is appl ied to a noise voltage (or any other fluctuating quantity 
whose spectrum is flat. 

White noise cannot actually exist. The simplest demonstration is to note that till 
mean power dissipated in the resistor in the frequency range (w 1 , (u2 ) is given by 

'"' { dw S (w)/R = kT(w 1 - w2 )/rr, ( 1 .5 .47 
w, 

so that the total power dissipated in all frequencies is infinite !  Nyquist realised this 
and noted that, in practice, there would be quantum corrections which would. at roorr 
temperature, make the spectrum flat only up to 7 x 1 0 1 3  Hz, which is not detectabll 
in practice, in a radio situation . The actual power dissipated in the resistor would hl 
somewhat less than infinite- I o- t o W in fact ! And in practice there are other l imi tin� 
factors such as the inductance of the system, which would limit the spectrum to ever 
lower frequencies. 

From the definition of the spectrum in terms of the autocorrelation function giver 
in Sect. 1 .5 ,  we have 

(E(t + r)E(t)) = G(r) ,  
I oo . 

= - I dw e-""T2RkT 
2rr -oo 

' 

= 2RkTc5(r), 

( 1 . 5 .48 

( 1 . 5 .49 

( 1 .5 .50 

which implies that no matter how small the time difference r. E(t + r) and E(r) an 
not correlated. This is , of course, a direct result of the flatness of the spectrum. A 
typical model of S (w) that is almost flat is 

S (w) = RkT/ [rr(w2?c + I )] .  ( 1 . 5 . 5 1 

This is flat provided w « r;:: 1 • The Fourier transform can be expl icitly evaluated ir 
this case to give 

(E(t + r)E(t)) = (R kT /rc ) exp( -T /Tc ), ( 1 . 5 .52 ) 
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rapidly decreasing spectrum 

so that the autocorrelation function vanishes only for r » rc , which is called the cor­

:·e/ation time of the fluctuating voltage. Thus, the delta function correlation function 
appears as an ideali sation, only valid on a suffici�ntly long .time scale : . 

This is very reminiscent of Einstein 's assumption regardmg Browman motion and 
of the behaviour of Langevin's fluctuating force. The idealised white noise ':"'ill play 
a highly important role in this book but, in just the same way as the fluc�uatton .term 
that arises in a stochastic differential equation is not the same as an ordmary differ­
ential , we will find that differential equations which include white noise as a d.riving 
term have to be handled with great care. Such equations arise very naturally m any 
fluctuating system and it is possible to arrange by means of Stratonov�ch 's rule� .for 
ordinary calculus rules to apply, but at the cost of imprecise mathematical defimt10n 
and some difficulties in stochastic manipulation. It turns out to be far better to aban­
don ordinary calculus and use the Ito calculus, which is not very different (it is, in 
fact, very similar to the calculus presented for shot noise) and to pr�serve tractable 
statistical properties. All these matters will be discussed thoroughly .m Chap. 4

_. 
White noise, as we have noted above, does not exist as a phystcally reahsable 

process and the rather singular behaviour it exhibits does not �se in �ny reali s�ble 
context. It is , however, fundamental in a mathematical , and mdeed m a phystcal 
sense, in that it is an idealisation of very many processes that do occur. The slightly 
strange rules which we will develop for the calculus of white noise are. not really 
very difficult and are very much easier to handle than any .meth�d ":"htch always 
deals with a real noise. Furthermore, situations in which whtte nmse ts not a go?d 
approximation can very often be indirectly expressed quite sim�ly in te�s of whtte 
noise. In this sense, white noise is the starting point from whtch a wtde range of 
stochastic descriptions can be derived, and is therefore fundamental to the subject of 
this book. 

2. Probability Concepts 

In the preceding chapter, we introduced probability notions without any definitions . 
In order to formulate essential concepts more precisely, it is necessary to have some 
more precise expression of these concepts. The intention of this chapter i s to provide 
some background, and to present a number of essential results. It is not a thorough 
outl ine of mathematical probability, for which the reader is referred to standard math­
ematical texts such as those by Feller [2. 1 ]  and Papoulis [2 .2] .  

2.1 Events, and Sets of Events 

It is convenient to use a notation which is as general as possible in order to describe 
those occurrences to which we might wish to assign probabilities. For example, we 
may wish to talk about a situation in which there are 6.4 x 1 0 14  molecules in a certain 
region of space; or a situation in which a Brownian particle is at a certain point x in 
space; or possibly there are I 0 mice and 3 owls in a certain region of a forest . 

These occurrences are all examples of practical reali sations of evellts. More ab­
stractly, an event is simply a member of a certain space, which in the cases most 
practically occurring can be characterised by a vector of integers 

n = (n J ,  nz ,  n3 . . .  ) , (2 . 1 . 1 )  

or a vector of real numbers 

(2 . 1 .2 )  

The dimension of the vector is arbitrary. 
It is convenient to use the language of set theory, introduce the concept of a set (�r 

events, and use the notation 

w E  A ,  (2 . 1 . 3 )  

to indicate that the event w i s  one of events contained i n  A .  For example, one may 
consider the set A(25) of events in the ecological population in which there are no 
more than 25 animals present; clearly the event w that there are 3 mice. a tiger. and 
no other animals present satisfies 

w E  A(25) . (2 . 1 .4) 

More significantly, suppose we define the set of events A(r, 11 V) that a molecule 
is within a volume element 11 V centred on a point r. In this case, the practical sig­
nificance of working in terms of sets of events becomes clear, because we should 


